Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063131

RESUMO

Analysis of muscle architecture, traditionally conducted via gross dissection, has been used to evaluate adaptive relationships between anatomical form and behavioral function. However, gross dissection cannot preserve three-dimensional relationships between myological structures for analysis. To analyze such data, we employ diffusible, iodine-based contrast-enhanced computed tomography (DiceCT) to explore the relationships between feeding ecology and masticatory muscle microanatomy in eight dietarily diverse strepsirrhines: allowing, for the first time, preservation of three-dimensional fascicle orientation and tortuosity across a functional comparative sample. We find that fascicle properties derived from these digital analyses generally agree with those measured from gross-dissected conspecifics. Physiological cross-sectional area was greatest in species with mechanically challenging diets. Frugivorous taxa and the wood-gouging species all exhibit long jaw adductor fascicles, while more folivorous species show the shortest relative jaw adductor fascicle lengths. Fascicle orientation in the parasagittal plane also seems to have a clear dietary association: most folivorous taxa have masseter and temporalis muscle vectors that intersect acutely while these vectors intersect obliquely in more frugivorous species. Finally, we observed notably greater magnitudes of fascicle tortuosity, as well as greater interspecific variation in tortuosity, within the jaw adductor musculature than in the jaw abductors. While the use of a single specimen per species precludes analysis of intraspecific variation, our data highlight the diversity of microanatomical variation that exists within the strepsirrhine feeding system and suggest that muscle architectural configurations are evolutionarily labile in response to dietary ecology-an observation to be explored across larger samples in the future.

2.
Methods Mol Biol ; 2692: 337-360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365478

RESUMO

The nematode Caenorhabditis elegans offers many experimental advantages to study conserved mechanisms of phagocytosis and phagocytic clearance. These include the stereotyped timing of phagocytic events in vivo for time-lapse imaging, the availability of transgenic reporters labeling molecules involved in different steps of phagocytosis, and the transparency of the animal for fluorescence imaging. Further, the ease of forward and reverse genetics in C. elegans has enabled many of the initial discoveries of proteins involved in phagocytic clearance. In this chapter, we focus on phagocytosis by the large undifferentiated blastomeres of C. elegans embryos, which engulf and eliminate diverse phagocytic cargo from the corpse of the second polar body to cytokinetic midbody remnants. We describe the use of fluorescent time-lapse imaging to observe the distinct steps of phagocytic clearance and methods to normalize this process to distinguish defects in mutant strains. These approaches have enabled us to reveal new insights from the initial signaling to induce phagocytosis up until the final resolution of phagocytic cargo in phagolysosomes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Apoptose , Fagocitose , Fagossomos/metabolismo
3.
J Biomed Mater Res A ; 110(3): 595-611, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590403

RESUMO

Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.


Assuntos
Hidrogéis , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Matriz Extracelular/química , Hidrogéis/química , Hidrogéis/farmacologia , Nervos Periféricos , Ratos , Engenharia Tecidual/métodos
4.
PeerJ ; 8: e9343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587802

RESUMO

The muscles of facial expression are of significant interest to studies of communicative behaviors. However, due to their small size and high integration with other facial tissues, the current literature is largely restricted to descriptions of the presence or absence of specific muscles. Using diffusible iodine-based contrast-enhanced computed tomography (DiceCT) to stain and digitally image the mimetic mask of Eulemur flavifrons (the blue-eyed black lemur), we demonstrate-for the first time-the ability to visualize these muscles in three-dimensional space and to measure their relative volumes. Comparing these data to earlier accounts of mimetic organization with the face of lemuroidea, we demonstrate several novel configurations within this taxon, particularly in the superior auriculolabialis and the posterior auricularis. We conclude that DiceCT facilitates the study these muscles in closer detail than has been previously possible, and offers significant potential for future studies of this anatomy.

5.
Anat Rec (Hoboken) ; 303(2): 282-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714689

RESUMO

Relative to all other primates, the aye-aye (Daubentonia madagascariensis) exists at the extremes of both morphology and behavior. Its specialized anatomy-which includes hypselodont incisors and highly derived manual digits-reflects a dietary niche, unique among primates, which combines tap-foraging with gouging to locate and extract wood-boring larvae. Here, we explore the impact of this extreme dietary ecology upon the masticatory musculature of this taxon with reference to a second, similarly sized but highly generalist lemuriform-the mongoose lemur (Eulemur mongoz). Using non-destructive, high-resolution diffusible iodine-based contrast-enhanced computed tomography techniques, we reconstruct the three-dimensional volumes of eight masticatory muscles, and, for the first time in strepsirrhines, isolate and visualize their constituent muscle fascicles in situ and in three dimensions. Using these data, we report muscle volumes, forces, and fascicle lengths from each muscle portion, as well as their orientation relative to two standardized anatomical planes. Our findings demonstrate the overbuilt nature of the aye-aye's masticatory apparatus, in which each muscle possesses an absolutely and relatively larger muscle volume and PCSA than its counterpart in the mongoose lemur. Likewise, for several adductor muscles, aye-ayes also possess relatively greater fascicle lengths. Finally, we note several unusual features within the lateral pterygoid of the aye-aye-the muscle most responsible for jaw protrusion-that relate to force maximization and reorientation. As this jaw motion is critical to gouging, we interpret these differences to reflect highly specific specializations that facilitate the aye-aye's extreme subsistence strategy. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:282-294, 2020. © 2019 American Association for Anatomy.


Assuntos
Adaptação Fisiológica/fisiologia , Músculos da Mastigação/anatomia & histologia , Strepsirhini/anatomia & histologia , Dente/anatomia & histologia , Animais , Comportamento Alimentar/fisiologia , Masculino , Músculos da Mastigação/diagnóstico por imagem , Músculos da Mastigação/fisiologia , Strepsirhini/fisiologia , Dente/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...